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The electrochemically induced unsteady mass transfer to a uniform shear flow from a local wall 
electrode subjected to a step change in electrochemical potential is studied. Due to neglecting 
the streamwise diffusion, the problem has two solutions which however differ only insignificantly. 
The resulting transient characteristics of current densities have a simple analytical form suitable 
for an efficient data treatment. 

Electrochemical measurement of mass transfer rates by the limiting-current technique offers 
number of possibilities for experimental studies on convective diffusion! and flow kinematics 2 

in vicinity of a polarized electrode. Under the supposed regime of limiting diffusion currents 
the mathematical description of transport processes is reduced to the familiar model of convective 
diffusion with the fixed concentrations on boundaries of the system3

. Numerous steady and 
transient problems of this type have been solved in relation to the convective heat transfer. 

Majority of these studies is related to the approximative theory of transport boundary layer 
i.e. to the asymptotics Pe -----7- OCJ when the effect of streamwise diffusion can be neglected. It is 
well known that the boundary layer approximation only exceptionally describes adequately the 
heat transfer process. In addition to a strong thermal dependence of transport properties and 
relatively low Peelet and Prandtl numbers, at comparison of theoretical and experimental results, 
there appears the disturbing effect of heat conduction through the walls and-with unste~dy proces­
ses-thermal capacity of walls. Perhaps this was the reason why accuracy of approximations of some 
theoretical studies4 is only about 10%, while in othersS ,6 the results are obtained in the form 
which prevents direct comparison with the experimental data. 

Considerably favourable is the situation as concerns the relation of the linear theory of trans­
port boundary layer to electrochemical experiments performed in the regime of limiting diffu­
sion currents. With regard to very low diffusivity in liquids the Prandtl and Peelet numbers 
are sufficiently high so that the effect of axial diffusion is negligible. Negligibility of the other 
electrochemical side 'effects (migration of ions of the depolarizer, finite rate of electrode reaction. 
resistances in the external electrical circu 't) is just typical of the regime of limiting diffusion 
currents. If we take into accou!1t that the h.igh, better than 1 %, accuracy of the electrochemical 
measurement of the instantaneous mass transfer rates, the present interest in accurate solutions. 
of linear problems of the transport boundary layer becomes understandable. 

THEORETICAL 

Accurate solution of the transient Leveque's problem is considered especially deter­
mination of time dependence of the mean current density on the electrode after 
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a step change of concentration of the depolarizer on its surface. Configuration of 
the process is demonstrated in Fig. 1, whose normalised mathematical model in the 
boundary-layer approximation is given by the following boundary problem for 
C(Z, X, T) 

aizc - z axc - aTc = ° (1) 

C~O for T ~ 0, X > 0, Z > ° (2a) 

c~o for T> 0, X ~ 0, Z > 0 (2b) 

c~o for T> 0, X > 0, Z ~ 00 (2c) 

C=l for T> 0. X > 0, Z = 0. (3) 

In equations (2a, b, c) it is necessary to understand the relations T> 0, X > 0, 
Z > ° so that is is possible to choose at the mentioned limiting process for T, X, Z 
an arbitrary, but fixed positive value. 

By introduction of the similarity variables 1'/, T it is possible to formulate the pro­
blem alternatively with two independent variables 

a~T]c + t1'/2 aT]c - (1 - !1'I1:) a,c = ° (4) 

C~O for T ~ 0, 1'/ > ° (Sa) 

C~O for T ~ 00, 1'/r- 1/2 > ° (Sb) 

c~o for T > 0, 1'/ ~ 00 (Sc) 

C = 1 for T > 0, 1'/ = ° . (6) 

To the limiting formulation (5a, b, c) there hold the same remarks as at formulations 
(2a, b, c). . 

The problem given by Eqs (1), (2a, b, c), (3) has been in principle already solved 
analytically 5 

,6. Two asp~cts, which deserve the attention are considered here: 1) in 
analytical studiess

,6 the transient characteristics for the total fluxes are not given, 
although these are only jnteresting from the experimental point of view, 2) the bound­
ary value problem according to (1), (2a, b, c), (3) does not have a single one but at 
least two different solutions. 

Duplicity of solution is worth notice with regard to the fact that the automodel 
boundary problems of analogous type4

,7 were until now considered as corectly 
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formulated with a single solution. From the practical point of view it is significant 
to decide which of both solutions has the assumed physical significance and to bring 
the formal solution into the form of a simply generable regression function expressing 
the time dependence of mean current densities. 

Singular Solution 

The boundary problems (1)-(3) have two asymptotic solutions. The first one for 
which identically axc = 0 represents the familiar penetration asymptote according 
to Higbie, for T ~ O. The second one for which identically aTC = 0 represents 
the familiar steady asymptote according to Leveque, for T ~ 00. Both these asympto­
tes have a simple analytical solution expressed in the automodel variables 11, T. 

The penetration asymptote is the solution of the automodel problem (4)-(6) for 
"C ~ 0, where Eq. (4) is reduced to the form a~l1c - a-rc = 0, with the familiar results 

where 

g(O = fOCi exp (-s) S-1/2 ds. 
~2 / 4 

(7) 

(8) 

The steady asymptote is the solution of the problem (4) - (6) for T ~ 00, a-rc = 0, 
,a~l1c + 1112 al1c = 0, with the familiar result 

(9) 

where 

1(11) = 3- 1 / 3 fOCi exp(-s)s-2/3ds. 
11 3

/ 9 

(10) 

C = c(x,z,t) 

FIG. 1 x=o 
Configuration of the Leveque's problem 
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These two simple automodel expressions represent the asymptotic solutions of 
all linear transient problems of the transport boundary layer theory. The speciality 
of the transient Leveque's problem is, in the literature so far unsubstantiated fact, 
that these asymptotic solutions exactly satisfy the complete differential equation (1) 
of this problem. As these two asymptotic solutions also fit all .the boundary conditions 
(2a, b, c), (3) in the required sense, it is possible to formulate on their basis the 
following singular solution of the given problem 

C - C ( ) _ {Cp('7, T) ; 
- PS '7, T -

Cs('7, T) ; 
(11a, b) 

The critical area of contact of both regions T = Tc('7) is given by the condition of 
continuity of solutions CpS(T, '7) for '7 E (0; (0): 

i.e. 

FIG. 2 

Structure of singular solution in the space 
Z, X, T. 0 Origin, P, S surfaces of constant 
concentration for penetration and steady 
asymptote, C singular front separating the 
whole phase space (Z, X, T) to the region 
of validity of penetration or steady asymptote 

(12a) 

(12b) 

FIG. 3 

Singular front in the space 17, •. 1 Singular 
front. = .c(17), 2, 3 asymptotic representa­

' tions of function .c(17) according to (I3a,b). 
Plotted are also lines of constant concen­
tration for C = 0'0001,0'01 and 0·1 
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Physically it is possible to consider the critical area 1: = 1:c( 17) as the singular front 
moving along the axis X by a finite velocity. The structure of singular solution in the 

. three-dimensional phase space Z = 0, X = 0, T = ° is demonstrated in Fig. 2 with 
the emphasis to the character of areas C = const. In Fig. 3 is plotted in coordinates 
17, 1: the function 1:c(17) defined by Eq. (12) their asymptote inclusive, which is 

(13a,b) 

The profiles of the moving singular front and the corresponding level of constant 
concentration C = 0·1 are demonstrated in Fig. 4. 

It is worth noting that the velocity of the singular front at the surface of the electro­
de (8X/8T)front,z=O' is given by the relation 11:0X- 1

/
3

, which corresponds to the local 
convective liquid velocity at the boundary of the steady concentration boundary 
layer. 

Analytical Solution 

Concentration field according to the analytical solution 5 constructed by the technique 
of the double Laplace transformation can be expressed by the functional series 

Fn(~' <) = 1m f~exp (-S3 + an,,2S2<) Ai( -an + "S~) din s, (15) 

FIG. 4 

Movement of singular front in the plane 
Z, X. Solid lines are representing momentous 
profiles of the singular front for T = O· 5, 
1·0, 1· 5. Dash and dotted lines represent' 
the corresponding development of con­
centration profiles in the penetration region 
on the level C = 0·1. Dashed line cor­
responds to the surface C = 0·1 in the steady 
region 
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where Ai( z) is the Airy's function of first kind, ( - an) are their zeros on the negative 
axis, x = (1 + i )3)/2, i = .j-l. 
Th~ normalised concentration gradient at the wall 

(16) 

can be expressed according to Eqs (14) and (15) by the series 

J*('!) = 1'-1 1 + -- "a- 1G(21/3a '!) 
( 

61/6 ) 

a J 0 r(2/3) L. n n , ' 
(17) 

where G(u) given according to the Eq. (15) by th~ Lebesque's integralS 

G(U) = Re f:exp [ -(1 + i) S3/2 + i1r/4 + i su] S-1/2 ds (18a) 

can be expressed by use of the Airy's function 6 

(18b) 

Th~ equivalence of relations (18a) and (18b) can be seen by the elementary procedure: 
By introduction of th~ new integration variable w = S3/2, three-fold derivation of the 
right side of Eq. (18a) according to the parameter u and elimination of all integral 
expressions the differential equation can be obtained with the real argument u, whose 
integral with initial conditions resulting from (18a) for u ~ 0 is given by relation 
(18b). The asymptotic representations G(u) are given by relations 

G(u) ~ {1'377940 - O'146257u
2 + O(u 3) ; U ~ 0 

(n/4)1/2 exp'( --l7U3 ) (1 + O(u- 3»; u ~ 00 . 
(19a, b) 

The shape of func'tion G( u) and the boundaries of applicability of asymptotic rela­
tions (19a, b) are obvious from Fig. 5. 

Local and Mean Current Densities 

According to Eq. (16) it is possible to express the local current densities by equation 

(20) 

As the steady asymptotic value J*( (0) is known, it seems suitable to introduce the 
normalised instantaneous local stream densities N = N( '!) = J*( '!)/ J*( (0). 
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It is easy to see that the singular solution according to (11 a, b) leads to the following 
representation of N( 'T) 

(21a, b) 

The nontrivial problem of numerical realisation of the function Nlr) = fo . J:Cr) 
according to the formal prescriptions (17) and (i8b) is in detail discussed in the 
study6, where the tabulated numerical values are also given to sufficient extent. 
Both alternative shapes of functions N( 'T) according to the analytical and singular 
solution are plotted in Fig. 6. It is obvious that the difference between the both 
versions is small and is concentrated to a small region in vicinity of 'T = 'To. 

From the experimental point of view there appear to be more interesting the data 
on mean current densities averaged over the surface of the electrode 

l(t) = L- 1 f>(x' t) dx. (22) 

0.1 

FIG. 5 

Kernel function of analytical solution, G(u). 
Solid line represents the exact form of Eq. 
(18b), dash and dotted is the asymptote (19a) 

for u---+ 0, dashed the asymptote (19b) 

for u ---+ CIJ 
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FIG. 6 

Time dependence of normalised current 
densities. 1 Local current densities N, 2 cur­
rent density N, averaged over the surface 
of the electrode. Solid lines represent de­
pendences of Na(,), Na('L) according to· 
the analytical solution and N ps(')' Nps('L) 
according to the singular solution 
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The time dependence of normalised mean current densities N = N(rL) can be, ac" 
cording to definitions summarised in the List of symbols, expressed on basis of the 
familiar time dependence of local current densities 

(23) 

To the singular solution according to (21 a, b) thus corresponds the transient 
characteristics 

(24a, b) 

The shape of transient characteristics on basis of the analytical solution (17) has 
been constructed by a numerical integration according to relations 

(25) 

~N(rd = -rLJOCJ(NaC-r) - Nps(-r)) -r- 2 d-r. 
tL 

(26) 

TABLE I 

Analytical solution of the transient Leveque's problem 

r, rL Na(r) AN(rL) Na(rL) 

0·1 , 3·3135 0'0006 2·2402 
0·2 2'34~8 0'0012 1·6241 
0·3 1-9136 0·0018 1-3684 
0'4 1-6569 0-0024 1-2285 
0-5 1-4820 0-0030 1-1428 

0-6 1·3529 0-0036 1-08'Z7 
0-7 1-2525 0-0042 1-0517 
0-8 1-1724 0-0048 1-0287 
0-9 1-1092 0-0051 1-0147 
1-0 1·0628 0-0047 1-0069 
1·1 1·0323 0-0029 1-0029 
1·2 1-0147 0-0011 1-0011 
1'3 . 1-0058 0·0004 1-0004 
1-4 1-0020 0-0001 1-0001 
1-5 1-0006 0-0000 1-0000 
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The results of numerical integration, supported by data in Table I can be represented 
with the accuracy of ± 0·00005 by semiempirical relations 

(27a, b) 

The resulting dependences of functions Nps(-rd, NlrL) are plotted in Fig. 6. The 
differences do not exceed ± o· 5% and are concentrated in close vicinity of the point 
-r:L = 0·9-r:o. 

Approximative Similarity Solution 

The usual methods of approximative solution of transient problems of the theory 
of transport boundary layer4

,7 can be easily modified so that the final approximation 
of the transient characteristics of current densities would have for t ~ 0, t ~ 00 

asymptotes identical with the exact solution. It is generally sufficient in the automodel 
problems with two independent variables 1], -r: to suppose the concentration field in 
the approximative similarity form 

(28) 

and instead of the usual integral balance (for which is cP = 1) to require for A( -r:) 
that the more general integral condition is satisfied, i.e. 

. roo [G~TlC + 11]2 GTlC - (1 - i1]-r:) GtC] cp(1], -r:) d1] = 0 , 
.; 0 

(29) 

where cp(1], -r:) is the in advance not determined function. 
Substitution of Eq. (28) into (29) leads to a differential equation for A(-r:) 

_ dA 
A 2 - A 1 + 2( b - -r:A) d -r: = 0 , (30) 

where the numerical coefficient b depends only on the selection of the weight function 
cp( 1], -r:). Especially, for cP = cp(~) there h,olds 

(31) 

It is possible to find out that for the steady asymptote dA/d-r: = 0 there results from 
Eq. (30) independently of selection of b the result A(-r:) = 1, C(1], -r:) = Cs(1], -r:), 
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identical with the exact solution. The coefficient b can be thus chosen so that for 
'r -+- 0 would be, in agreement with the exact penetration asymptote, satisfied the 
relation 

(32) 

This requirement is satisfied by the selection b = 'ro. It is possible to demonstrate 
that the corresponding cI>(~) can be selected by infinite number of ways. One of 
the possibilities is very close to the function cI>(~) = (f'(~)yI2. 

For so selected b the differential equation (30) with the initial condition A(O) = 0 
has only a single one piecewise smooth solution 

A(r) = {(r/ro)-1/2 ; 

1 . , 
r < ro 
r > ro. 

(33) 

The corresponding approximative expression of transient characteristics · N( r), 
N( rd is obviously identical with the result of the exact singular solution according 
to Eqs (21a, b), (24a, b). 

DISCUSSION 

The fact that the transient Leveque's problem, which has been considered until 
now as the "well posed", has at least two equivalent solutions is obviously related 
to the neglection of the axial diffusion. Which of the two solutions is the "legitimate" 
asymptote of the complete problem (with the inclusion of axial diffusion) for Pe -+- 00 

is the question which should be answered by a profesional mathematician. The present 
state of theory, when the effect of axial diffusion is considered on basis of the pertur­
bation around the known asymptotes for Pe -+- 00 hints that a considerably compli­
cated problem is considered which is not solvable by the present techniques. 

In the transient Leveque's problem appears worth noting the fact that the auto­
model formulation (4) is not simplifying the mathematical solution. On the contrary, 
new problems are encountered with the adequate formulation of boundary conditions 
In study5 the problem is defined only by three conditions which are here given as 
Eqs (5a), (5c) and (6). But without condition (5b) the problem has another parasite 
solution on the whole region (1], r) in the form C(1], r) = Cp(1], r). Already from this 
fact is obvious that the numerical solution of problems of this type by the mesh 
method must fail. Besides, with the transient Leveque's problem do fail even the 
most usual analytical methods. The Laplace transformation fails, as Eq. (4) is not 
a differential equation with constant, i.e. on r independent coefficients. The Fourier's 
method8

,9 and the method of singular perturbations fail totally because the asympto­
tes Cp and Cs, around which are constructed the corresponding functional series, 
satisfy the differential Eq. (4) identically. To the analytical solution leads only the 
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considerably refined technique of two-fold Laplace transformation5
,6. On the other 

hand it is possible "to guess" the equivalent singular solution of the problem directly 
form the auto model formulation which is written alternately in variables (17, 1") or 

(" r). 
Nevertheless, from the practical point of view both exact solutions seem to be well 

applicable. The local inaccuracy of theoretical mean expressions for current densities 
does not exceed O· 5% and will be always smaller in comparison with the inaccuracy 
of data on geometry of electrodes, flow velocity, concentration of depolarizer etc., 
let alone the electrochemical effects which have been mentioned in the introduction. 
It seems that in these connections the problem of the effect of axial diffusion becomes 
of secondary significance. For purpose~ of quantitative evaluation of experimental 
data is obviously more advantageous to use the simpler of the eXflct theories according 
to Eq. (24a, b). By introduction of a pair of normalisation parameters 1(00), to and 
the corresponding normalised variables, Eq. (24a, b) can be written in the form 

N(r ) -- {e- 1/2 + .. l7 e; e < 9/4 
L - 1; e > 9/4: 

(34) 

Here, the relaxation time of the experiment to has the geometric significance of the 
time coordinate of intersection of the power asymptotes 1 '" t- 1/2 and 1 ::d const. 
which in the coordinates log 1 - log t appear as straight lines. 

LIST OF SYMBOLS 

A normalised thickness of the concentration boundary layer, Eq. (28) 
c concentration of depolarizer 
Co initial concentration 
Cw concentration on polarized electrode 
C = (co - c)/(co - cw) 

D diffusivity of depolarizer 
Fv charge transferred by one mole of depolarizer 

' f(r}) defined by Eq. (10) 
fo = f(O) = 3- 1/3r(1/3) = 1·8574723 
g(O ' defined 'by Eq. (8) 
go = g(O) = rO/2) =, 1'7724538 
G(u) Kernel function of analytical solution, Eq. (18a,b) 
lex, t) = Fv lex, t} momentous local current density on electrode 
1(00) = 0'80755FvcoD2/3y1/3 L -1/3 mean steady current density, according to Eq. (22) 
lex, t) = D 0zclz=o diffusion flux of depolarizer toward the surface of electrode 
1*(.) normalized momentous fluxes at the wall, Eq. (16) 
1*(00) = f o-

1 

L length of electrode in the flow direction 
N = lex, t)/l(x, (0) 

N = 7(t)/1(00) 
t1.N defined by Eq. (26) 
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Pe = yL 2 /D Peelet number of the Leveque's problem 
I time measured from the moment of the step change of the electrode potential 
to = O'48810D- 1/3y-2/3 L2/3 relaxation time of the transition process 
T= yt 
x, z longitudinal and normal coordinates, Fig. 1 
X = (y/D)1/2x 

Z= (y/D)1/2 z 
y constant shear rate, Fig. 1 
c; = Z/A(t) ,= I1 t - l / 2 = ZT- l / 2 

11 = ZX- l / 3 

e = I/to = (9/4) (tL/tO) 

t = TX- 2
/ 3 time variable of local description 

t e(l1) function describing the advance of the singular frolit, Eq. (J 2a,b) 
tL = D l

/
3l/3 L- 2

/
31 time variable of global description 

to = (fO/gO)2 

Superscripts 

mean value over surface of electrode 

Subscripts 

a analytical solution 
P penetration asymptote 
S steady asymptote 
PS singular solution 
C singular front 
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