3209

ON THE TRANSIENT LEVEQUE’S PROBLEM WITH AN APPLICATION
IN ELECTRCCHEMISTRY

Ondrej WEIN

Institute of Chemical Process Fundamentals,
Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol

Received December 9th, 1980

The electrochemically induced unsteady mass transfer to a uniform shear flow from a local wall
electrode subjected to a step change in electrochemical potential is studied. Due to neglecting
the streamwise diffusion, the problem has two solutions which however differ only insignificantly.
The resulting transient characteristics of current densities have a simple analytical form suitable
for an efficient data treatment.

Electrochemical measurement of mass transfer rates by the limiting-current technique offers
number of possibilities for experimental studies on convective diffusion® and flow kinematics?®
in vicinity of a polarized electrode. Under the supposed regime of limiting diffusion currents
the mathematical description of transport processes is reduced to the familiar model of convective
diffusion with the fixed concentrations on boundaries of the systemB. Numerous steady and
transient problems of this type have been scived in relation to the convective heat transfer.

Majority of these studies is related to the approximative theory of transport boundary layer
i.e. to the asymptotics Pe— o0 when the effect of streamwise diffusion can be neglected. It is
well known that the boundary layer approximation only exceptionally describes adequately the
heat transfer process. In addition to a strong thermal dependence of transport properties and
relatively low Peclet and Prandtl numbers, at comparison of theoretical and experimental results,
there appears the disturbing effect of heat conduction through the walls and-with unsteady proces-
ses-thermal capacity of walls. Perhaps this was the reason why accuracy of approximations of some
theoretical studies® is only about 10%, while in others®*® the results are obtained in the form
which prevents direct comparison with the experimental data.

Considerably favourable is the situation as concerns the relation of the linear theory of trans-
port boundary layer to electrochemical experiments performed in the regime of limiting diffu-
sion currents. With regard to very low diffusivity in liquids the Prandtl and Peclet numbers
are sufficiently high so that the effect of axial diffusion is negligible. Negligibility of the other
electrochemical side effects (migration of ions of the depolarizer, finite rate of electrode reaction.
resistances in the external electrical circu't) is just typical of the regime of limiting diffusion
currents. If we take into account that the high, better than 19, accuracy of the electrochemical
measurement of the instantaneous mass transfer rates, the present interest in accurate solutions
of linear problems of the transport boundary layer becomes understandable.

THEORETICAL

Accurate solution of the transient Leveque’s problem is considered especially deter-
mination of time dependence of the mean current density on the electrode afte
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a step change of concentration of the depolarizer on its surface. Configuraticn of
the process is demonstrated in Fig. 1, whose normalised mathematical model in the
boundary-layer approximation is given by the following boundary problem for
C(Z,X,T)

87,C— Z3;C - 8;C=0 (1)
G40 Yoy TALE S0 254 (2a)
C->0 for T>0, X—>0,Z>0 (2b)
G0 for " Tl XD Z w0 .(20)
Crmil for' T>0 X5 0,2=40. (3)

In equations (2a, b, ¢) it is necessary to understand the relations 7> 0, X > 0,
Z > 0 so that is is possible to choose at the mentioned limiting process for T, X, Z
an arbitrary, but fixed positive value.

By introduction of the similarity variables #, 7 it is possible to formulate the pro-
blem alternatively with two independent variables

0;.C + 4> 0, — (1 — %) 0,C = 0 (4)
C—-0 for 70, >0 (5a)
C—-0 for 100, g 2 >0 (5b)

: G= 0l fon =0 7n—00 (5¢)
== R ey === (R == () WS (6)

To the limiting formulation (Sa, b, c) there hold the same remarks as at formulations
(2a, b, c). s

The problem given by Egs (1), (2a, b, ¢), (3) has been in principle already solved
analytically>*®. Two aspzcts, which dzserve the attention are considered here: ) in
analytical studies®® the transient characteristics for the total fluxes are not given,
although thess are only interesting from the experimental point of view, 2) the bound-
ary value problem according to (1), (2a, b, ¢), (3) does not have a single one but at
least two different solutions.

Daplicity of solution is worth notice with regard to the fact that the automodel
boundary problems of analogous type*'’ were until now considered as corectly
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formulated with a single solution. From the practical point of view it is significant
to decide which of both solutions has the assumed physical significance and to bring
the formal solution into the form of a simply generable regression function expressing
the time dependence of mean current densities.

Singular Solution

The boundary problems (/)—(3) have two asymptotic solutions. The first one for
which identically 0,C = 0 represents the familiar penetration asymptote according
to Higbie, for T— 0. Th: second one for which identically 0;C = 0 represents
the familiar steady asymptote according to Leveque, for T — co. Both these asympto-
tes have a simple analytical solution expressed in the automodel variables #, t.

The penetration asymptote is the solution of the automodel problem (4)—(6) for
t — 0, where Eq. (4) is reduced to the form 5§qC — 3.C = 0, with the familiar results

G = Ty ki= gl gy . (7)

where

g(¢) =Jw exp (—s)s™ "2 ds. (8)

The steady asymptote is the solution of the problem (4)—(6) for t — o0, 8,C = 0,
0;,C + 1n* 8,C = 0, with the familiar result

C = Cy(n, 1) = f()|fo 9)
where
f(n) = 3_’/3J exp (—s)s™?3ds. (10)
n3/9
c=c(x,zt)
2 T =
=% ¥z
z=9
777K <
FiG. 1 x=0 X=L
Configuration of the Leveque’s problem
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These two simple automodel expressions represent the asymptotic solutions of
all linear transient problems of the transport boundary layer theory. The speciality
of the transient Leveque’s problem is, in the literature so far unsubstantiated fact,
that these asymptotic solutions exactly satisfy the complete differential equation (/)
of this problem. As these two asymptotic solutions also fit all the boundary conditions
(2a, b, ¢), (3) in the required sense, it is possible to formulate on their basis the
following singular solution of the given problem

Co(m, )5 T < 7o)

Cs(n, ‘r) RN Tc(ﬂ) . (_110, b)

C = Cs(n, 7) = {

The critical area of contact of both regions t = ’L’C(ﬂ) is given by the condition of
continuity of solutions Cpg(7, 1) for 5 € (0; o0):

Ce(n, 1(n)) = Cs(n, () ; (12a)

(s ) = fln) - (£2b)

/@r \'\\l\z
/L\__ AN S

T~ S
_’L_L N
/) / /\
[

X 0

o}

7

|
-~

F1G. 2
Structure of singular solution in the space
Z, X, T. O Origin, P, § surfaces of constant
concentration for penetration and steady
asymptote, C singular front separating the
whole phase space (Z, X, T) to the region
of validity of penetration or steady asymptote

F1G. 3
Singular front in the space 7, t. 1 Singular
front T = v (»), 2, 3 asymptotic representa-
tions of function t (») according to (/3a,b).
Plotted are also lines of constant concen-
tration for C = 0-0001, 0-01 and 0-1
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Physically it is possible to consider the critical area t = 7,(1) as the singular front
moving along the axis X by a finite velocity. The structure of singular solution in the
three-dimensional phase space Z = 0, X = 0, T = 0 is demonstrated in Fig. 2 with
the emphasis to the character of areas C = const. In Fig. 3 is plotted in coordinates
5, © the function 7,(n) defined by Eq. (12) their asymptote inclusive, which is

20) ~{ (4(11)+ (1220))° 5 Z:‘; (13a, b)

The profiles of the moving singular front and the corresponding level of constant
concentration C = 0-1 are demonstrated in Fig. 4.

It is worth noting that the velocity of the singular front at the surface of the electro-
de (0X /0T )tront 2= 0» is given by the relation 3t,X '/, which corresponds to the local
convective liquid velocity at the boundary of the steady concentration boundary
layer.

Analytical Solution

Concentration field according to the analytical solution® constructed by the technique
of the double Laplace transformation can be expressed by the functional series

C=Cyn7) = Cs(m 1) + L ———— Fun, 7) (19)

aAz(—-a)

Eoly, €= ImJ~ exp (—s* + ay?s?t) Ai(—a, + xsn)dIns, (15)
0

FiG. 4

Movement of singular front in the plane
Z, X. Solid lines are representing momentous
profiles of the singular front for 7= 0-5,
10, 1-5. Dash and dotted lines represent
the corresponding development of con-
centration profiles in the penetration region
on the level C= 0-1. Dashed line cor-
responds to the surface C = 0-1 in the steady
region
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where Ai(z) is the Airy’s function of first kind, ( —a,) are their zercs on the negative
axis, x = (1 +1./3)f2,i=/-1.
Thz nermalised concentration gradient at the wall

J*(T) =X E)ZC’Z=0 = anc|n=0 (16)

can be expressed according to Eqs (/4) and (/5) by the series

A 61/6 R
Ty = 5 P+ - a;‘Gf21/3anr>, 17
) = 45" (1+ i Tea 602" ar0) @)

where G(u) given according to the Eq. (15) by th: Lebesque’s integral®

G(u) = Ref exp [—(1 + 1) s*? + inf4 + isu] s~ ds (18a)

0
can be expressed by use of the Airy’s function®
G(u) = 2°/° 373 exp (—u?[27) Ai(187*%u) . (18b)

Thz equivalence of relations (/8a) and (/8b) can be seen by the elementary procedure:
By introduction of the new integration variable w = s%/2, three-fold derivation of the
right side of Eq. (/8a) according to the parameter u and elimination of all integral
expressions the differential equation can be obtained with the real argument u, whose
integral with initial conditions resulting from (/8a) for u — 0 is given by relation
(18b). The asymptotic representations Glu) are given by relations

1:377940 — 0-146257u? + O(u®);  u — 0

(n/4)? exp (—F71’) ( (u"3)) ; (196, 5)
p 27~‘)\1+0W )/’ IS

Glu) = {

The shape of function G(u) and the boundaries of applicability of asymptotic rela-
tions (19a, b) are obvious from Fig. 5.

Local and Mean Current Densities

According to Eq. (16) it is possible to express the local current densities by equation

I(x, £} = F,D(—,6)|,=0 = FyeoD*?y'? J¥z) x~13, (20)

As the steady asymptotic value J*(Uo) is known, it seems suitable to introduce the
normalised instantaneous local stream densities N = N(t) = J*(1)[J*(0).
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It is easy to sce that the singular solution according to (/7a, b) leads to the following
representation of N(t)

e (214, b)

i Fraa

The nontrivial problem of numerical realisation of the function N(t) = f, . J3(7)
according to the formal prescriptions (/7) and (78b) is in detail discussed in the
study®, where the tabulated numerical values are also given to sufficient extent.
Both alternative shapes of functions N{t) according to the analytical and singular
solution are plotted in Fig. 6. It is obvious that the difference between the both
versions is small and is concentratcd to a small regicn in vicinity of T = 1.

From the experimental point of view there appear to be more interesting the data
on mean current densities averaged over the surface of the electrode

L
i e e | o) v
I3y =L J I(x, 1) dx . (22)
0 "
e
-
0.01 I I !
0 1 2 EETI
FiG. 5 FiG. 6
Kernel function of analytical solution, G(u). Time dependence of normalised current
Solid line represents the exact form of Eq. densities. 1 Local current densities N, 2 cur-
(18b), dash and dotted is the asymptote (19a) rent density N, averaged over the surface
for u—0, dashed the asymptote (/9b) of the electrode. Solid lines represent de-
for u— oo pendences of Ny (1), Na(fL) according to

the analytical solution and Npg(r), Npg(ty)
according to the singular solution
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The time dependence of normalised mean current densities N = N(t.) can be, ac-
cording to definitions summarised in the List of symbols, expressed on basis of the
familiar time dependence of local current densities

N(z) = TLJMN(T) il (23)

TL

To the singular solution according to (2/a, b) thus corresponds the transient
characteristics

Z e 1 > d
)it AR 5w (244, 0

Bk ¢, Tpas=in g

The shape of transient characteristics on basis of the analytical solution (/ 7) has
been constructed by a numerical integration according to relations

N-a('r,_) e NPS(TL) = AN(TL) (25)

AN(z) = TLF(NQ(T) L (26)

TL

TABLE 1

Analytical solution of the transient Leveque’s problem

s N, (7) AN(zy) Na(7p)
01 3-3135 0-0006 2:2402
02 2:3428 0-0012 1-6241
0-3 1-9136 0-0018 1-3684
0-4 1-6569 0-0024 1-2285
0-5 1-4820 0-0030 1-1428
0-6 1-3529 0-0036 1-0877
0-7 1-2525 0-0042 1-0517
0-8 1-1724 0-0048 1-0287
09 1-1092 0-0051 1-0147
1-0 1-0628 0-0047 1-0069
11 1:0323 0-0029 1-0029
12 1-0147 0-0011 1-0011
1-3 1-0058 0-0004 1-0004
1-4 1-:0020 0-0001 1-0001
1-5 1-:0006 0-0000 1-0000
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The results of numerical integration, supported by data in Table I can be represented
with the accuracy of +0-00005 by semiempirical relations

0'006OTL - O'OOIB(TL)II'O g TL < To (27a b)
0:07717 33 exp (—1-8973) (1 — 0-42173); 7. > 7. ’

AN(r,) = {

The resulting dependences of functions Npg(t.), N,(r.) are plotted in Fig. 6. The
differences do not exceed +0-5% and are concentrated in close vicinity of the point
e =0019%5:

Approximative Similarity Solution

The usual methods of approximative solution of transient problems of the theory
of transport boundary layer*:” can be easily modified so that the final approximation
of the transient characteristics of current densities would have for t - 0, t -
asymptotes identical with the exact solution. It is generally sufficient in the automodel
problems with two independent variables #, T to suppose the concentration field in
the approximative similarity form

Cin, 7) = fo* (&), &= nA(q) (28)

and instead of the usual integral balance (for which is @ = 1) to require for A(t)
that the more general integral condition is satisfied, i.e.

["Tezc + 1 8,c — (1 — 3m) 0.CY 9, 9y dn = 0, (29)
v 0

whzre &(n, 7.') is the in advance not determined function.
Substitution of Eq. (28) into (29) leads to a differential equation for A(7)

AP ATV Rl g ‘iA 0, (30)
%

where the numerical coefficient b depends only on the selection of the weight function
(n, 7). Especially, for @ = @(¢) there holds

b= gfq»(é) EF(E) / j ECEVCES (31)

It is possible to find out that for the steady asymptote dA4/dt = 0 there results from
Eq. (30) independently of selection of b the result A(z) = 1, C(n, 1) = Cs(n, 1),
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identical with the exact solution. The coefficient b can be thus chosen so that for
7 — 0 would be, in agreement with the exact penetration asymptote, satisfied the
relation

0,Cla=o = (A(1) fo) " = go 't 2. (32)

This requirement is satisfied by the selection b = 7,. It is possible to demonstrate
that the corresponding 45(5) can be selected by infinite number of ways. One of
the possibilities is very close to the function (&) = (f'(£))"/%.

For so selected b the differential equation (30) with the initial condition 4(0) = 0
has only a single one piecewise smooth solution

A5 = {(1/1:0)-1/2 e (33)

1 5 T SR T,

The corresponding approximative expression of transient characteristics N(r),
N(z,) is obviously identical with the result of the exact singular solution according
to Eqs (21a, b), (24a, b).

DISCUSSION

The fact that the transient Leveque’s problem, which has been considered until
now as the “well posed”, has at least two equivalent solutions is obviously related
to the neglection of the axial diffusion. Which of the two solutions is the “legitimate”
asymptote of the complete problem (with the inclusion of axial diffusion) for Pe — o
is the question which should be answered by a profesional mathematician. The present
state of theory, when the effect of axial diffusion is considered on basis of the pertur-
bation around the known asymptotes for Pe — co hints that a considerably compli-
cated problem is considered which is not solvable by the present techniques.

In the transient Leveque’s problem appears worth noting the fact that the auto-
model formulation (4) is not simplifying the mathematical solution. On the contrary,
new problems are ¢éncountered with the adequate formulation of boundary conditions
In study® the problem is defined only by three conditions which are here given as
Egs (5a), (5¢) and (6). But without condition (5b) the problem has another parasite
solution on the whole region (7, 7) in the form C(n,1) = Cp(y, 7). Already from this
fact is obvious that the numerical solution of problems of this type by the mesh
method must fail. Besides, with the transient Leveque’s problem do fail even the
most usual analytical methods. The Laplace transformation fails, as Eq. (4) is not
a differential equation with constant, i.e. on t independent coefficients. The Fourier’s
method®? and the method of singular perturbations fail totally because the asympto-
tes Cp and Cg, around which are constructed the corresponding functional series,
satisfy the differential Eq. (4) identically. To the analytical solution leads only the
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considerably refined technique of two-fold Laplace transformation®'®. On the other
hand it is possible “to guess™ the equivalent singular solution of the problem directly
form the automodel formulation which is written alternately in variables (», ) or
(& th

Nevertheless, from the practical point of view both exact solutions seem to be well
applicable. The local inaccuracy of theoretical mean expressions for current densities
does not exceed 0-5% and will be always smaller in comparison with the inaccuracy
of data on geometry of electrodes, flow velocity, concentration of depolarizer etc.,
let alone the electrochemical effects which have been mentioned in the introduction.
It seems that in these connections the problem of the effect of axial diffusion becomes
of secondary significance. For purposes of quantitative evaluation of experimental
data is obviously more advantageous to use the simpler of the exact theories according
to Eq. (24a, b). By introduction of a pair of normalisation parameters I(c0), t, and
the corresponding normalised variables, Eq. (24a, b) can be written in the form

@_1/2 = 747 @; O < 9/4

e i {1 @ > 94, (34

]

Here, the relaxation time of the experiment ¢, has the geometric significance of the
time coordinate of intersection of the power asymptotes I ~ ¢~ /2 and I = const.
which in the coordinates log I — log ¢ appear as straight lines.

LIST OF SYMBOLS

A normalised thickness of the concentration boundary layer, Eq. (28)
€ concentration of depolarizer
co initial concentration

o concentration on polarized electrode
C=(co— C)/(C'o )

D diffusivity of depolarizer

B charge transferred by one mole of depolarizer

f(m) defined by Eq. (10)
fo= f(0) = 37 Y30(1/3) = 1-8574723

g9() defined by Eq. (8)
go = 9(0) = I'(1/2) = 1:7724538
G(u) Kernel function of analytical solution, Eq. (18a,b)

I(x,t) = F,J(x,t) momentous local current density on electrode
I(c0) = 0-80755F,cqD*/*y*/*L™ /3 mean steady current density, according to Eq. (22)
J(x,t) = D d,c|,_o diffusion flux of depolarizer toward the surface of electrode

J*(1) normalized momentous fluxes at the wall, Eq. (16)
J¥eo) = fo !
it length of electrode in the flow direction

N = I{(x, t)]I(x, )
N = I(t)]1(=0)
AN defined by Eq. (26)
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Pe = yL*/D Péclet number of the Leveque’s problem

t time measured from the moment of the step change of the electrode potential
1o = 0-48810D° 1/:“y"z/:"LZ/3 relaxation time of the transition process

TR

A longitudinal and normal coordinates, Fig. 1

&= P DI e

Z= (/D)2

b constant shear rate, Fig. 1
&= Z[A(7)

e 3 S e

il A

0 = t/ty = (9/4) (v [79)

7= TX 2?/3 time variable of local description

7.(m) function describing the advance of the singular front, Eq. (124,5)
T = DY/342/3172/3;  time variable of global description

To= (fo/go)z

Superscripts

— mean value over surface of electrode

Subscripts
a analytical solution
P penetration asymptote
S steady asymptote
PS singular solution
G singular front
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